Effect of using bio-relevant media in the DissolvIt® system to measure dissolution of fluticasone propionate from Flixxotide 50 µg Evorhaler

Mireille Hassoun1, Maria Malmlöf2, Abhinav Kumar3, Sukhi Bansal3, Mattias Nownewik2, Per Gerde2, Mark Parry1, Ben Forbes5
1Institute of Pharmaceutical Science, King’s College London, UK and 2Inhalation Sciences Sweden AB, Stockholm, Sweden and 3Intertek, Heris, Melbourne

Introduction

- There are various methods for in vitro dissolution developed for OIPs. However, most systems require large volumes of dissolution medium and the media currently used have been simple aqueous fluids, or with the addition of various surfactants[1].
- FP is a poorly soluble inhaled drug[2] and represents a challenge in dissolution tests since it is difficult to maintain sink conditions and it is not easy to assay FP in low concentrations. Therefore, a highly sensitive assay is required with an efficient extraction method[3-4].
- The DissolvIt® from Inhalation Sciences was developed as an in vitro dissolution tool for OIPs that utilises low volume of dissolution medium and allows particle disintegration to be studied visually while drug dissolution is quantified chemically in a dynamic flow-past model[5-6].
- The development of a physiologically representative methodology, including a biorelevant medium, is required to address the current unmet need for a system that is more characteristic of the in vivo environment.

Aims

- To validate a new rapid and sensitive LC-MS/MS method to quantify FP in samples from an investigation into the use of bio-relevant media in the DissolvIt® system.
- To investigate the effect of dissolution medium on FP aerosol particle dissolution, using three different media (Table 1): (i) 1.5% polyethylene oxide including 0.4% L-alphaphosphatidyl ethanol (PEO), (ii) Survanta®, and (iii) an in house developed simulated lung lining fluid (sLLF), synthesised based on accurate measurements of human lung fluid composition.

Methods

- Validation of the LC-MS/MS assay
 Calibration standards (156, 313, 625, 2500, 5000 and 10,000 pg/mL) were prepared by serial dilution of 1 µg/mL FP working solution with acetonitrile. Working solution in terms of linearity, intra-day & inter-day precision (%CV), accuracy, limit of detection (LOD) & limit of quantification (LOQ), based on FDA guidance.
- Deposition and dissolution of FP aerosol in the DissolvIt® system
 The Flixotide pMDI was connected to the PreciChill® aerosol generator (Figure 1). The inhaler was dosed into an airflow of 15 L/min and the aerosol particles were deposited onto glass cover slips. The bio-relevant media, 5.7ul, was applied to one side of the polycarbonate membrane of a single-use dissolution chamber. The sample, with the membrane, provided diffusion barrier (Figure 1). On the other side of the membrane, the perfusate was streamed past at a flow rate of 0.4 mL/min. Particle disintegration was studied using optical microscopy and chemical analysis of FP dissolved in flow-past perfusion medium.
- FP quantification
 Samples were prepared for analysis using SPE. Briefly, 325ul of sample was loaded into a deep-well plate followed by 50ul of internal standard (FP-d5), 300ul of 0.1M zinc sulphate & 75ul of 10% ammonium hydroxide and mixed. They were centrifuged at 3700g and transferred to an Evolv® Express 96-well plate. Samples were reconstituted with 30ul of 55% v/v acetone in water and injected into the LC-MS/MS.
- Data analysis
 Peak integration was performed using MassLynx 4.1 software. Data was expressed as mean ± standard deviation. For FP dissolution, the %FP in perfusate was expressed as % of amount deposited on the glass slide. One-Way ANOVA was applied and statistically significant when p ≤ 0.05.

Results

- Excellent linearity between the mean peak area ratio of FP/FP-d5 and the concentration of FP in the samples was observed (R² value = 0.999).
- The inter-day and intra-day precision data complied with the validation guidance, with all CV being ≤20%, except for 156 pg/mL and 313 pg/mL.
- The accuracy data for all FP standard concentrations passed the accepted criteria of 85-115% (Figure 2).
- The LOD and LOQ were 106 pg/mL and 312 pg/mL respectively.
- FP concentration in perfusate was highest at all time points when FP dissolved in PEO & lowest in sLLF (Figure 3a).
- The FP concentration profile in perfusate was very similar between PEO and Survanta®, both reaching a Cmax at 20min; but the difference in the FP concentration values in PEO and sLLF at 20 min was statistically significant (One-Way ANOVA, p<0.05).
- The cumulative percent of FP transferred into the perfusate over time showed similar profiles in each medium (Figure 3b).

Discussion

- SPE offers an improved extraction method over liquid phase extraction since it is less time-consuming and requires minimal sample preparation and solvent use[8].
- The 156pg/mL FP standard fell outside the accepted CV (<20%), attributed to the concentration being close to the LOD (106 pg/mL). However, the FP concentrations in the dissolution experiments fell within the upper range of the assay, which was fit for purpose.
- The PEO medium used as a standard in the DissolvIt® system possessed a lower lipid content than in sLLF. It was hypothesised that dissolution of FP in PEO would be enhanced as the greater lipid content may facilitate drug solubilisation. However, the results showed less FP transfer to the perfusate when sLLF was used compared to PEO, and it is speculated that FP may preferentially reside or become trapped within lipid/amelar lamellar structures in sLLF.
- sLLF contains cholesterol, unlike other lung fluid simulants, and studies have shown that cholesterol can form tight nanodomain complexes with DPPC, stabilising the DPPC in lipid structures such that once the FP is solubilised within, it is less likely to leave such structures[9].

Conclusions

- A SPE/LC-MS/MS assay for FP was established successfully and able to quantify low concentrations (pg/mL) of the FP in lung fluids.
- The hypothesis that the dissolution and transfer of FP in the perfusate would be enhanced by using sLLF was not supported by this study. FP may reside preferably in the lipid structures, limiting the transfer into the perfusate.
- Further studies are required to evaluate more fully the impact of the medium composition on dissolution profile and whether more bio-relevant media can provide data more predictive of inhaled particle dissolution.

References